DOI: https://doi.org/10.30841/2708-8731.2.2025.326506

Current issues of the premenstrual disorders development

I. O. Kostitska¹, N. M. Zherdova², A. Ya. Pavliak¹, V. A. Miskiv¹, U. M. Dutchak¹, O. V. Antymys¹, L. B. Bagaylyuk¹, M. M. Ivanishchak¹

¹Ivano-Frankivsk National Medical University

²SSI "Center for Innovative Medical Technologies of NAS of Ukraine", Kyiv

Premenstrual disorders remain one of the most prevalent pathologies in women all over the world. The core disorders – premenstrual syndrome (PMS) and premenstrual dysphoric disorder – predominate in women of reproductive age. Also, there are four variants of premenstrual disorders – premenstrual exacerbation, premenstrual disorders due to nonovulatory ovarian activity, progestogen-induced premenstrual disorders, premenstrual disorders with absent menstruation. Recently, the prevalence of any premenstrual disorder is up to 87% in female population.

In this article some mechanisms that are involved in the pathogenesis of PMS are presented. The fluctuations of different hormones (namely, estradiol, progesterone, testosterone, etc.) and not normal response of the central nervous system to such variations can lead to psychological changes. Serotonin, serotonin transporter, gamma amonibutyric acid are involved in the mechanisms of mood disorders. Genetic factor is studied in different woman's reproductive diseases. Gene polymorphism of SERT, COMT, MAOA, BDNF, ESR1 and ESR2 genes were studied most often in PMS development. One of the subtypes of premenstrual disorders is premenstrual exacerbation, when clinical manifestations of underlying diseases are expressed more before menstruation. Special attention is paid to the association of metabolic syndrome, overweight, obesity with premenstrual syndrome. There is a negative impact of these diseases of the regulation of menstrual cycle processes — early menarche onset, abnormal uterine bleeding (irregular periods, heavy menstrual bleeding or amenorrhea), hyperandrogenism, low concentration of sex steroid-binding globulin. It was found that the frequency of PMS in overweight and obese women is almost twice higher than in normal weight women. Women with metabolic syndrome who suffer from PMS have poor sleep quality, they are more depressive and anxiety. The most common association of gene between obesity, diabetes mellitus and PMS is related to angiotensin converting enzyme gene and its I/D polymorphism, however, the results of such relationship are controversial. It is very important the for different medical professionals to understand the manifestations of premenstrual disorders and prescribe to the patients not only medicament treatment, but also perform for them psychological support and give recommendations about lifestyle changes.

Keywords: premenstrual syndrome, etiology, pathogenesis, hormones, genes, quality of life, metabolic syndrome, obesity, diabetes mellitus, microbiota.

Актуальні питання механізмів розвитку передменструальних розладів І. О. Костіцька, Н. М. Жердьова, А. Я. Павляк, В. А. Міськів, У. М. Дутчак, О. В. Антимис, Л. Б. Багайлюк, М. М. Іваніщак

Передменструальні розлади залишаються однією з найпоширеніших патологій у жінок у всьому світі. Основні передменструальні розлади — передменструальний синдром (ПМС) і передменструальний дисфоричний розлад — переважають у жінок репродуктивного віку. Також розрізняють чотири підтипи передменструальних розладів: передменструальне загострення фонового захворювання, неовуляторний передменструальний розлад, прогестерон-індукований передменструальний розлад та передменструальні розлади з відсутністю менструації. Останнім часом поширеність будь-якого передменструального розладу становить до 87% серед жіночої популяції.

У цій статті описано механізми, які беруть участь у патогенезі ПМС. Коливання різних гормонів (зокрема естрадіолу, прогестерону, тестостерону та ін.) і ненормальна реакція центральної нервової системи на такі коливання можуть призвести до психологічних змін. Серотонін, транспортер серотоніну, гамма-амонімасляна кислота беруть участь у механізмах розладів настрою. Генетичний фактор вивчено при різних захворюваннях репродуктивної системи жінки. Найчастіше досліджували поліморфізм генів SERT, COMT, MAOA, BDNF, ESR1 та ESR2 при розвитку ПМС. Одним із підтипів передменструальних розладів є передменструальне загострення фонового захворювання, коли перед менструацією відзначаються більш виражені клінічні прояви основного захворювання. Особливу увагу приділено асоціації метаболічного синдрому, надмірної ваги, ожиріння з передменструальним синдромом. Встановлено негативний вплив цих захворювань на регуляцію процесів менструального циклу – раннє настання менархе, аномальні маткові кровотечі (нерегулярні менструації, рясні менструальні кровотечі або аменорея), гіперандрогенія, низька концентрація глобуліну, що зв'язує статеві стероїди. Виявлено, що частота ПМС у жінок із зайвою вагою та ожирінням майже вдвічі вища, ніж у жінок із нормальною вагою. Жінки з метаболічним синдромом, які страждають на ПМС, мають незадовільну якість сну, вони більш депресивні та тривожні. Найпоширенішою асоціацією між ожирінням, цукровим діабетом і ПМС є ген ангіотензинперетворювального ферменту та його поліморфізмом I/D, проте результати вивчення такого зв'язку є суперечливими. Медичним працівникам різних спеціальностей дуже важливо розуміти прояви передменструальних розладів і призначати пацієнткам не тільки медикаментозне лікування, а й здійснювати психологічний супровід та надавати рекомендації щодо зміни способу життя. Ключові слова: передменструальний синдром, етіологія, патогенез, гормони, гени, якість життя, метаболічний синдром, ожиріння, цукровий діабет, мікробіота.

© The Author(s) 2025 This is an open access article under the Creative Commons CC BY license

Premenstrual disorders are characterised by somatic and psychological symptoms of varying severity that occur during the luteal phase of the menstrual cycle and dissapear during menstruation [1]. The core types of premenstrual disorders are premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD) [2]. Besides PMS and PMDD, there are some other variants of premenstrual disorders — premenstrual exacerbation, premenstrual disorders due to nonovulatory ovarian activity, progestogen-induced premenstrual disorders, premenstrual disorders with absent menstruation [2].

PMS is characterized by physical, behavior and psychological manifestations that occur not due to the organic diseases or underlying psychiatric pathologies. Symptoms recur regularly during the luteal phase of each menstrual cycle and dissolve or significantly regress by the end of menstruation. The main PMS psychological manifestations include mood changes, filling of anxiety, depression, emotional lability, changes in appetite, etc. Among physical symptoms are breast tenderness, fluid retention, oedema, headache, changes in skin, hair, etc. Some studies indicate that PMS symptoms have almost 80% of women [3]. According to the literature search which was performed by P. Das and S. Jungari, in Google Scholar, PubMed, ISTOR, Scopus and Sci Direct databases for the period 2000-2022, the prevalence of any menstrual disorders in female population account from 3 to 87% [4]. There is a significant widespread of PMS, which increases from 1990 till 2019 year and estimates from 652.5 million till 956.0 million persons, respectively, that is the rise by 46.5% [5]. The premenstrual symptoms rate (40-71% of women) is on the second place after dysmenorrhea incidence (46–76% of females). While the results of D. Dwivedi et al. notify the first rank for PMS prevalence (41.63%) compared to dysmenorrhea (28.29%) [6]. As to the distribution between physical and psycho-emotional symptoms frequency, according to C. Franco-Antonio et al. study, which was performed in women 19-23 years old, the physical manifestations (92.7%) prevailed over the emotional signs (55.6%) [7]. Regarding the age period, it was found the most frequency of PMS among females 20-29 years old (46.7%), less rate was established in women 30–39 years old (38.3%) and 40-49 years (15.0%) [8]. In women aged 20-29 years and 40-49 years psychological signs of anxiety/tension predominated, in 30-39 years old females the most spread psychological symptoms were irritability and anger. Commonly, PMS is positively related to stress, sleep disorders, depression, eating problems, and in the contrary, sleep disturbance, strength of menstrual pain influence on intensity of PMS manifestations [9]. The kind of working activity also impact on the presence and intensity of premenstrual symptoms. The rate of PMS is more in working women who have higher educational qualification, work position, career occupation and sexual activity compared to women with lower quality of life [10].

There is also a great social and economic impact of PMS on woman's life [3, 11]. Premenstrual disorders worth the daily activity of women (p = 0.039), relationship with family (p = 0.001) and other persons (p = 0.002) [12]. According to the results of the standardized World Health Organization Quality of Life (WHOQOL-BREF) ques-

tionnaire in young women with PMS the lowest quality of life score was assessed to mental health (p = 0.006), the highest score – to social relationship (p = 0.002) [13]. The evidences suggest the PMS and PMDD role in the perinatal depression development, as during pregnancy, as well in postpartum period [14–16]. The main diagnosis tool for PMS is the using of different daily questionnaires for fixations of symptoms.

Behavior changes in women with PMS can be related to the fluctuations of hormonal levels, genetic predisposition [3]. Hypothalamic-pituitary-ovarian (HPO) axis is considered one of the main pathogenetic factors in the disorders of female reproductive organs. The changes in the HPO axis function are related to the mood disturbances in female organism. Not normal response of the central nervous system on the variations of neuroactive steroids hormones that occur during the menstrual cycle usually leads to mood problems [17, 18]. Ovarian steroids hormones, estrogen and progesterone vary in different periods of woman's life, as well there are fluctuations of their concentration in different phases of the menstrual cycle. These changes of the hormonal levels influence throw the limbic system on the brans functioning. Numerous researches found the influence of sex steroids hormones on brain activity, including the mood system [19]. The more considerable elevation of serum blood estradiol concentration was determined in women with severe PMS in the luteal phase of the menstrual cycle compared to the follicle phase. There is more expressed estradiol increasing in such patients than in healthy individuals [20]. As to the progesterone, its increasing in the luteal phase compared to the follicle phase of the menstrual cycle was less than in healthy women [21, 22]. The results of S. Hashemi et al. indicate higher prolactin, triglyceride amount in PMS women compared to controls, while levels of testosterone, high density lipoprotein and 17-hydroxyprogesterone are decreased [23]. On another side, it was determined that, women with PMDD - the severe form of premenstrual syndrome – commonly have lower estrogen concentration in the luteal phase of menstrual cycle and women with depression seem to be related to lower testosterone and dehydroepiandrosterone sulfate concentrations [24].

The influence of genetic factors for in premenstrual disorders development is not fully studied [17, 25]. Gene polymorphism of SERT, COMT, MAOA, BDNF, ESR1 and ESR2 genes were studied most often. The results demonstrated not very convinced evidence [25]. The methodology using machine learning algorithms on the rat models was developed [26]. This model helps to determine the pathogenetic mechanisms for the mood changes (anxiety and depression) in rats using ribonucleic acid sequencing and subsequent quantitative polymerase chain reaction. 17 main genes were established for such changes. Different pathologies of female reproductive organs are related to genetic predisposition. The researches demonstrated the role of ESR1 polymorphism (PP + Pp genotype) in the dysmenorrhea development in Korean adolescents, while there was no significant difference in the glutathione S-transferase mu 1 (GSTM1), glutathione S-transferase theta 1 (GSTT1), glutathione S-transferase pi 1 (GSTP1) gens in persons with and

without dysmenorrhea [27]. Also, an association of ESR1 gene polymorphism was determined with polycystic ovary syndrome. G allele careers for polycystic ovary syndrome development odds ratio (OR) = 1.92 (95%), confidence interval (CI) = (1.300-2.859), relative risk = 1.38(1.130-1.691) p-value < 0.001 [28]. At the same time PvuII-rs2234693 C > T gene polymorphism of *ESR1* gene has no connection with an increased risk of polycystic ovary syndrome [28]. The results of other research indicate the role of rs2234693 ESR1 gene not only in hormonal changes in the polycystic ovary syndrome, but more significant in the metabolic disorders, that occur in women with polycystic ovary syndrome [29]. The evidences suggest that some variants of single nucleotide polymorphisms of ESR1 and ESR2 genes can be diagnosis prediction the biomarkers of the polycystic ovary syndrome [30]. The association of different female reproductive pathologies and PROGINS gene polymorphism was revealed. The studies inform about the improved predisposition of PROGINS in women with polycystic ovary syndrome [31]. The results of meta-analysis of 25,405 controls and 19,253 female reproductive cancer cases demonstrated that progesterone receptor gene Alu insertion and the V660L polymorphism contained in the PROGINS polymorphism can be assessor reason for female reproductive cancer [32]. There is a relation of *PROGINS* gene polymorphism in breast cancer [33, 34], fibromyalgia syndrome [35], and no association with uterine fibroids [36, 37].

The role of serotonin transporter gene seems to be one of the first genes to be studied in premenstrual dysphoric disorder pathogenesis. Some researchers reject the influence of serotonin-transporter-linked promoter region (5-HTTLPR), in particular, the gene that codes for the serotonin transporter, rs25531 promoter polymorphism, in PMDD [38]. The studies found that genes from the gamma-aminobutyric acid (GABA) pathway – steroid-5-alphareductase, alpha polypeptide 1 (SRD5A1) and gamma-aminobutyric acid receptor subunit alpha-4 (GABRA4) – can protect against severe premenstrual symptoms [39]. In particular, the researchers determined that the cytosine/cytosine (C/C) genotype for the SRD5A1 SNP, rs501999 can defend against the severe premenstrual symptoms. Allopregnanolone (Allo) - a metabolite of progesterone - is a positive GABA, receptor modulating steroid and has strong effects. There is a relationship between high Allo concentration and increased bad mood, disorders of memory and increased food intake in some human individuals and pathologies such as PMDD, hepatic encephalopathy and polycystic ovarian syndrome [40].

The study of different of estrogen gene receptor *ESR1* polymorphisms in women with PMS was performed. GG genotype of *A-351G* polymorphic variant of gene estrogen receptor *ESR1* is associated with severe PMS symptoms (OR 11.39, 95% CI 1.29–98.89, p = 0.03) and related to persons with mainly edematous manifestations before/during menstruation (OR 9.33, 95% CI 1.05–82.78, p = 0.04) [41, 42]. High serum blood estradiol growth in the luteal phase of menstrual cycle is more pronounced in women with severe PMS who are carriers of G allele of *ESR1* gene than in carriers of A allele [20]. At the same time T-397C polymorphic variant of estrogen receptor

gene *ESR1* was not revealed as a marker for PMS course and development [43]. The frequency of TT, TC and CC alleles was statistically similar in premenstrual syndrome and healthy women. T1T1 genotype of *PROGINS* gene was related to a lower blood serum progesterone level in the luteal phase of the menstrual cycle in PMS women compared to the healthy women but no association was revealed between T1T2 genotype and reduced progesterone concentration in the luteal phase by PMS compared to healthy women [21, 22].

As it was mentioned, one of the forms of premenstrual disorders is premenstrual exacerbation. It is a condition when clinical manifestations are underlying psychological, somatic or medical pathology and significantly worsen before menstruation [2]. Such basic and underlying diseases can be diabetes mellitus, depression, epilepsy, bronchial asthma, migraine, etc. These patients experience symptoms, which are characterized their underlying disease throughout the menstrual cycle. Thus, a special attention should be paid to women with metabolic disorders, diabetes mellitus, obesity. There is a negative influence of obesity on the processes of menstrual cycle – early menarche onset, abnormal uterine bleeding (irregular periods, heavy menstrual bleeding or amenorrhea), hyperandrogenism, low concentration of sex steroid-binding globulin (SSBG) [44-47]. It was found the morphological and functional changes in different organs and systems, which are caused by diabetes mellitus [48–52]. It is known the impact of obesity, diabetes mellitus on the formation of cancer of female reproductive organs [53, 54]. Women with obesity are associated with premenstrual disorders (PMS and PMDD), polycystic ovary syndrome [55, 56]. Visceral adiposity, especially in women with central fat accumulation, can support PMS development [57]. Menstrual disorders, in particular, premenstrual syndrome, are typical for women with overweight and obesity [58]. The frequency of PMS among women with overweight (32.0%) and obesity I-II (32.5%) is significantly higher than in women with normal body weight index (BMI) (13.3%) [58]. The similar results were received by D. Dwivedi et at. [6]. The researchers found that rate of PMS in overweight (45.40%) and obese (51.28%) women is almost twice higher than in normal weight women (26.17%). This study also informs that underweight persons have the highest frequency of PMS - 82.98%. However, the results of M. Mizgier et al. demonstrate that women with normal body mass index (BMI $\leq 25 \text{ kg/m}^2$) have PMS two times more than women with high BMI $> 25 \text{ kg/m}^2$ [59].

The role of metabolic disorders in PMS syndrome is confirmed by other studies [47, 60]. P. Sharifan et al. determined that the excessive use of monounsaturated fatty acid and young age are more risk factor for severe PMS (p = 0.041, OR = 23.789, 95% CI for OR: 1.138 and 497.294) while riboflavin intake decrease the severity of the pathology [47]. Women with metabolic syndrome who suffer from PMS have poor sleep quality, they are more depressive and anxiety compared to PMS persons without metabolic syndrome (p < 0.001) [60]. According to the results of linear regression every one unit of PMS score increase the likelihood of metabolic syndrome growth on 12% (p = 0.033) [23].

ISSN 2708-8731 (online

The studies reveled the connection of diabetes mellitus as a risk factor for PMS (p < 0.001) [61]. The presence of PMS may strengthen the mechanisms of menstrual cycle regulation on insulin sensitivity [62]. Other researches inform that glucose and insulin resistance concentrations are less in PMS women in two phases of menstrual cycle than in healthy subjects [63]. The most common association of gene between obesity, diabetes mellitus and PMS is related to angiotensin converting enzyme (ACE) gene and its I/D polymorphism. It is known that angiotensin-converting enzyme is involved in the processes of regulation of blood pressure. adipocyte growth, lipids homeostasis. There is a relationship of ACE gene I/D polymorphism with body mass index, overweight, obesity, waist circumference, dyslipidemia [64], diabetes mellitus [65, 66]. On the other side, there is insignificant relation of ID polymorphism in Chinese patients with diabetes mellitus type 2 [67]. Also, F. F. Pirozzi et al. did not find any association between 2 type diabetes mellitus, obesity, and angiotensin-converting enzyme gene insertion/deletion (I/D) [68], and the results of D. F. Lelis et al. demonstrated no relationship between overweight, obesity and ACE gene polymorphisms [69]. The increased risk of severe PMS has the women with DD genotype ACE gene (OR = 3.43, 95% CI 1.02-11.47, p = 0.045) [70].

Additionally, it is known about the association between obesity, diabetes mellitus and gut microbiota changes [71]. Also, the association of microbiota changes and some other hormonal gynecological diseases was determined [56, 72, 73]. As to the relation of microbiota features with PMS it was found a difference in beta diversity for the gut microbiota between PMS women and controls [74]. The researchers determined reduction of *Extibacter, Butyricicoccus, Megasphaera*, and *Parabacteroides* and increase in *Anaerotaenia* in women with PMS. Also, the results of other study demonstrate that the abundances of *Collinsella, Bifidobacterium*, and *Blautia* were significantly higher compared woman without PMS [75]. Namely, abundance of Collinsella increased almost 4.5

times relative to controls. The group of researchers Y. Yao et al. revealed that among 119 kinds of gut microbiota and 4 kinds of clinical phenotypes only Escherichia/Shigella (p = 0.00032, positive false discovery rate = 0.0382, OR = 1.004, 95% CI = 1.002–1.006) is associated with menstrual disorders [76]. According to some studies a positive effect on premenstrual manifestations treatment was observed using different supplements and medications which influence on gut microbiota [77, 78].

Not only gynecologists but also general physicians meet in their practice with PMS patients. Mostly, general physicians have good experience for premenstrual syndrome treatment. They give lifestyle advices, psychological care for such patients and prescribe oral contraceptives. The study of E. L. Funnell et al. demonstrated that among 339 women with PMS who visited doctor for the medical help, almost half of them (44.25%) reported that their symptoms were not taken seriously by doctors, and most patients were not recommended about lifestyle changes, receiving recommendations of non-formal sources of help; according to survey's results, better results of medical help were connected when healthcare professionals taking symptoms seriously, and give recommendations about lifestyle changes [79]. But, sometimes more training programs for better diagnosis and professional medical care for patients with PMS are necessary [80]. Additionally, the information about the PMS symptoms should be given as early as possible, even to the adolescents [11].

Thus, premenstrual syndrome remains the relevant medical and social problem. In recent years new mechanisms of its development were determined. The association of premenstrual disorders with metabolic conditions extremely impact of each other course and lead to more severe manifestations. It is very important the for different medical professionals to understand the manifestations of premenstrual disorders and prescribe to the patients not only medicament treatment, but also perform psychological support and give recommendations about lifestyle changes.

Information about the authors

Kostitska Iryna O. – MD, PhD, DSc, Professor, Ivano-Frankivsk National Medical University; tel.: (050) 156-18-18. E-mail: ikosticka@ifnmu.edu.ua

ORCID: 0000-0003-4319-0986

Zherdova Nadiia M. – MD, PhD, DSc, Professor, SSI "Center for Innovative Medical Technologies of NAS of Ukraine", Kyiv; tel.: (067) 185-90-54. *E-mail: nadejda05.1977@gmail.com*

ORCID: 0000-0003-2716-8447

Pavliak Andrii Ya. – MD, PhD, Associate Professor, Ivano-Frankivsk National Medical University; tel.: (068) 591-21-57. E-mail: apavliak@ifnmu.edu.ua

ORCID: 0000-0001-6948-8778

Miskiv Vasyl A. – PhD, Associate Professor, Ivano-Frankivsk National Medical University; tel.: (097) 921-79-69. E-mail: miskivv@gmail.com

ORCID: 0000-0002-3924-1544

Dutchak Uliana M. – PhD, Associate Professor, Ivano-Frankivsk National Medical University; tel.: (066) 732-10-52. *E-mail: udutchak@ifnmu.edu.ua*

ORCID: 0000-0002-3715-5650

Antymys Olga V. – PhD, Associate Professor, Ivano-Frankivsk National Medical University, Ivano-Frankivsk; tel.: (093) 665-72-17. *E-mail: oantymys@ifnmu.edu.ua*

ORCID: 0000-0001-6040-8137

Bagaylyuk Lesya B. – MD, Ivano-Frankivsk National Medical University; tel.: (063) 549-38-38. E-mail: bagaukki@ukr.net ORCID: 0009-0006-3252-2913

Ivanishchak Mariana M. – MD, Ivano-Frankivsk National Medical University; tel.: (066) 044-23-94. *E-mail: ivanishchak_ma@ifnmu.edu.ua*

ORCID: 0009-0006-4786-7033

Відомості про авторів

Костіцька Ірина Олександрівна — д-р мед. наук, професор, Івано-Франківський національний медичний університет; тел.: (050) 156-18-18. *E-mail: ikosticka@ifnmu.edu.ua*

ORCID: 0000-0003-4319-0986

Жердьова Надія Миколаївна — д-р мед. наук, професор, ДНУ «Центр інноваційних медичних технологій НАН України», м. Київ; тел.: (067) 185-90-54. *E-mail: nadejda05.1977@gmail.com*

ORCID: 0000-0003-2716-8447

Павляк Андрій Ярославович — канд. мед. наук, доцент, Івано-Франківський національний медичний університет; тел.: (068) 591-21-57. *E-mail: apavliak@ifnmu.edu.ua*

ORCID: 0000-0001-6948-8778

Міськів Василь Андрійович — канд. мед. наук, доцент, Івано-Франківський національний медичний університет; тел.: (097) 921-79-69. *E-mail: miskivv@gmail.com*

ORCID: 0000-0002-3924-1544

Дутчак Уляна Михайлівна — канд. мед. наук, доцент, Івано-Франківський національний медичний університет; тел.: (066) 732-10-52. *E-mail: udutchak@ifnmu.edu.ua*

ORCID: 0000-0002-3715-5650

Антимис Ольга Василівна — канд. мед. наук, доцент, Івано-Франківський національний медичний університет; тел.: (093) 665-72-17. *E-mail: oantymys@ifnmu.edu.ua*

ORCID: 0000-0001-6040-8137

Багайлюк Леся Богданівна — Івано-Франківський національний медичний університет; тел.: (063) 549-38-38. *E-mail: bagaukki@ukr.net*

ORCID: 0009-0006-3252-2913

Іваніщак Мар'яна Мирославівна — Івано-Франківський національний медичний університет; тел.: (066) 044-23-94. E-mail: ivanishchak ma@ifnmu.edu.ua

ORCID: 0009-0006-4786-7033

REFERENCES

- 1. O'Brien PM, Bäckström T, Brown C, Dennerstein L, Endicott J, Epperson CN, et al. Towards a consensus on diagnostic criteria, measurement and trial design of the premenstrual disorders: the ISP-MD Montreal consensus. Arch Womens Ment Health. 2011;14(1):13-21. doi: 10.1007/s00737-010-0201-3.
- 2. Stute P, Bodmer C, Ehlert U, Eltbogen R, Ging A, Streuli I, et al. Interdisciplinary consensus on management of premenstrual disorders in Switzerland. Gynecol Endocrinol. 2017;33(5):342-8. doi: 10.1080/09513590.2017.1284788. 3. Gillings MR. Were there evolutionary advantages to premenstrual syndrome? Evol Appl. 2014;7(8):897-904. doi: 10.1111/eya.12190.
- 4. Das P, Jungari S. Prevalence, risk factors and health-seeking behavior of menstrual disorders among women in India: a review of two-decade evidence. Glob Health Action. 2024;17(1):2433331. doi: 10.1080/16549716.2024.2433331.
- 5. Liu X, Li R, Wang S, Zhang J. Global, regional, and national burden of premenstrual syndrome, 1990–2019: an analysis based on the Global Burden of Disease Study 2019. Hum Reprod. 2024;39(6):1303-15. doi: 10.1093/humrep/deae081.
- Dwivedi D, Singh N, Gupta U. Prevalence of menstrual disorder in women and its correlation to body mass index and physical activity. J Obstet Gynaecol India. 2024;74(1):80-7. doi: 10.1007/s13224-023-01914-0.
- 7. Franco-Antonio C, Santano-Mogena E, Cordovilla-Guardia S. Dysmenorrhea, premenstrual syndrome, and lifestyle habits in young university students in Spain: A cross-sectional study. J Nurs

- Res. 2025;33(1):e374. doi: 10.1097/jnr.00000000000000657.
- 8. Pedro AO, Brandão JDP, de Oliveira Silva SB, Lapa MG, Castilho VC. Impact of age on premenstrual syndrome prevalence and severity: A population-based survey in Brazil. Int J Gynaecol Obstet. 2025;168(3):1221-28. doi: 10.1002/jigo.15895.
- 9. Yi SJ, Kim M, Park I. Investigating influencing factors on premenstrual syndrome (PMS) among female college students. BMC Women's Health. 2023;23(1):592. doi: 10.1186/s12905-023-02752-y.
- 10. Maheshwari P, Menon B, Jith A, Bhaskaran R. Prevalence of premenstrual syndrome and its effect on quality of work life in working women in South India. Ind Psychiatry J. 2023;32(2):255-9. doi: 10.4103/ipj.ipj 106 22.
- 11. Zendehdel M, Elyasi F. Biopsychosocial etiology of premenstrual syndrome: A narrative review. J Family Med Prim Care. 2018;7(2):346-56. doi: 10.4103/jfmpc.jfmpc 336.17.
- 12. Jaber RM, Alghzawi AO, Salameh HH. Premenstrual syndrome: consultation sources and the impact on women's quality of life. Afr Health Sci. 2022;22(1):80-7. doi: 10.4314/ahs.v22i1.10.
- 13. Branecka-Woźniak D, Cymbaluk-Ploska A, Kurzawa R. The impact of premenstrual syndrome on women's quality of life — a myth or a fact? Eur Rev Med Pharmacol Sci. 2022;26(2):598-609. doi: 10.26355/eurrev_202201_27887.
- 14. Pereira D, Pessoa AR, Madeira N, Macedo A, Pereira AT. Association between premenstrual dysphoric disorder and perinatal depression: a systematic review. Arch Women's Ment Health. 2022;25(1):61-70. doi: 10.1007/s00737-021-01177-6.

- 15. Ohsuga T, Egawa M, Tsuyuki K, Ueda A, Komatsu M, Chigusa Y, et al. Association of preconception premenstrual disorders with perinatal depression: an analysis of the perinatal clinical database of a single Japanese institution. Biopsychosoc Med. 2024;18(1):24. doi: 10.1186/s13030-024-00323-7.
- 16. Zhylka NYa, Pedachenko NYu, Shcherbinska OS, Gruzieva TS, Pakharenko LV. Improvement of the health services for the prevention of HIV transmission from mother to child at the level of primary health care. Wiad Lek. 2022;75(10):2507-13. doi: 10.36740/WLek202210136.
- 17. Hantsoo L, Payne JL. Towards understanding the biology of premenstrual dysphoric disorder: From genes to GABA. Neurosci Biobehav Rev. 2023;149:105168. doi: 10.1016/j.neubiorev.2023.105168.
- 18. Hantsoo L, Jagodnik KM, Novick AM, Baweja R, di Scalea TL, Ozerdem A, et al. The role of the hypothalamic-pituitary-adrenal axis in depression across the female reproductive lifecycle: current knowledge and future directions. Front Endocrinol (Lausanne). 2023;14:1295261. doi: 10.3389/fendo.2023.1295261.
- 19. Catenaccio E, Mu W, Lipton ML. Estrogen- and progesterone-mediated structural neuroplasticity in women: evidence from neuroimaging. Brain Struct Funct. 2016;221(8):3845-67. doi: 10.1007/s00429-016-1197-x.
- 20. Pakharenko LV, Vdovichenko YuP, Kurtash NY, Basiuha IO, Kravchuk IV, Vorobii VD, et al. Estradiol blood level and ESR1 gene polymorphism in women with premenstrual syndrome. Wiad Lek. 2020;73(12):2581-85. doi: 10.36740/WLek202012105.

- 21. Pakharenko LV. Evaluation of progesterone and progesterone receptor gene PROGINS polymorphism in the development of some forms of premenstrual syndrome. Reprod Health Woman. 2020;(1):10-4. doi: 10.30841/2708-8731.1.2020.471241.
- 22. Pakharenko LV. Evaluation of progesterone receptor gene PROGINS polymorphism in the development of some forms of premenstrual syndrome. New Armenian Med J. 2015;9(2):52-9.
- 23. Hashemi S, Ramezani Tehrani F, Mohammadi N, Rostami DM, Torkestani F, et al. Comparison of metabolic and hormonal profiles of women with and without premenstrual syndrome: A community based cross-sectional study. Int J Endocrinol Metab. 2016;14(2):e28422. doi: 10.5812/ijem.28422.
- 24. Amiel Castro RT, Ehlert U, Fischer S. Variation in genes and hormones of the hypothalamic-pituitary-ovarian axis in female mood disorders A systematic review and meta-analysis. Front Neuroendocrinol. 2021;62:100929. doi: 10.1016/j.yfrne.2021.100929.
- 25. McEvoy K, Osborne LM, Nanavati J, Payne JL. Reproductive Affective Disorders: a Review of the Genetic Evidence for Premenstrual Dysphoric Disorder and Postpartum Depression. Curr Psychiatry Rep. 2017;19(12):94. doi: 10.1007/s11920-017-0852-0.
- 26. Chang YW, Hatakeyama T, Sun CW, Nishihara M, Yamanouchi K, Matsuwaki T. Characterization of pathogenic factors for premenstrual dysphoric disorder using machine learning algorithms in rats. Mol Cell Endocrinol. 2023;576:112008. doi: 10.1016/j.mce.2023.112008.

ISSN 2708-8731 (online

- 27. Woo HY, Kim KH, Lim SW. Estrogen receptor 1, glutathione S-transferase P1, glutathione S-transferase M1, and glutathione S-transferase T1 genes with dysmenorrhea in Korean female adolescents. Korean J Lab Med. 2010;30(1):76-83. doi: 10.3343/kjlm.2010.30.1.76.
- 28. Mir R, Tayeb FJ, Barnawi J, Jalal MM, Saeedi NH, Hamadi A, et al. Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 Pvull-rs2234693 T > C) and MiRNA-146a (rs2910164 C > G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. Int J Environ Res Public Health. 2022;19(5):3114. doi: 10.3390/ijerph19053114.
- 29. Douma Z, Dallel M, Bahia W, Ben Salem A, Hachani Ben Ali F, Almawi WY, et al. Association of estrogen receptor gene variants (ESR1 and ESR2) with polycystic ovary syndrome in Tunisia. Gene. 2020;741:144560. doi: 10.1016/j.gene.2020.144560.
- 30. Muccee F, Ashraf NM, Razak S, Afsar T, Hussain N, Husain FM, et al. Exploring the association of ESR1 and ESR2 gene SNPs with polycystic ovary syndrome in human females: a comprehensive association study. J Ovarian Res. 2024;17(1):27. doi: 10.1186/s13048-023-01335-7.
- 31. Mir R, Altayar MA, Hamadi A, Tayeb FJ, Saeedi NH, Jalal MM, et al. Molecular determination of progesterone receptor's PROGINS allele (Alu insertion) and its association with the predisposition and susceptibility to polycystic ovary syndrome (PCOS). Mamm Genome. 2022;33(3):508-16. doi: 10.1007/s00335-021-09941-w.
- 32. Zhou C, Zou X, Wen X, Guo Z. Association of the PROGINS PgR polymorphism with susceptibility to female reproductive cancer: A meta-analysis of 30 studies. PLoS One. 2022;17(7):e0271265. doi: 10.1371/journal.pone.0271265.
- 33. Albalawi IA, Mir R, Abu-Duhier FM. Molecular Evaluation of PROGINS Mutation in Progesterone Receptor Gene and Determination of its Frequency, Distribution Pattern and Association with Breast Cancer Susceptibility in Saudi Arabia. Endocr Metab Immune Disord Drug Targets. 2020;20(5):760-70. doi: 10.2174/1871530319666191125153050.
- 34. Ghali RM, Al-Mutawa MA, Ebrahim BH, Jrah HH, Zaied S, Bhiri H, et al. Progesterone Receptor (PGR) Gene Variants Associated with Breast Cancer and Associated Features: a Case-Control Study. Pathol Oncol Res. 2020;26(1):141-7. doi: 10.1007/s12253-017-0379-z.
- 35. Nursal AF, Cagliyan Turk A, Kuruca N, Yigit S. The role of the progesterone receptor PROGINS variant in the development of fibromyalgia syndrome and its psychological findings. Nucleosides Nucleotides

- Nucleic Acids. 2024;43(11):1333-45. doi: 10.1080/15257770.2024.2335364.
- 36. Toprak M, Ates O, Ozsoy AZ, Bozkurt N, Sezer SS, Cakmak B, et al. Analysis of estrogen and progesterone receptor gene polymorphisms in leiomyoma. J Clin Lab Anal. 2019;33(3):e22704. doi: 10.1002/jcla.22704.
- 37. Da Silva F, Pabalan N, Ekaratcharoenchai N, Serpa NA, Christofolini DM, de Oliveira R, et al. PROGINS Polymorphism of the progesterone receptor gene and the susceptibility to uterine leiomyomas: A systematic review and meta-analysis. genet test mol biomarkers. 2018;22(5):295-301. doi: 10.1089/qtmb.2017.0233.
- 38. Magnay JL, El-Shourbagy M, Fryer AA, O'Brien S, Ismail KM. Analysis of the serotonin transporter promoter rs25531 polymorphism in premenstrual dysphoric disorder. Am J Obstet Gynecol. 2010;203(2):181.e1-5. doi: 10.1016/j.ajog.2010.02.043.
- 39. Adams M, McCrone S. SRD5A1 genotype frequency differences in women with mild versus severe premenstrual symptoms. Issues Ment Health Nurs. 2012;33(2):101-8. doi: 10.3109/01612840.2011.625514.
- Bäckström T, Das R, Bixo M. Positive GABA, receptor modulating steroids and their antagonists: Implications for clinical treatments. J Neuroendocrinol. 2022;34(2):e13013. doi: 10.1111/jne.13013.
- 41. Pakharenko LV. Effect of estrogen receptor gene ESR1 polymorphism on development of premenstrual syndrome. Reprod Health Woman. 2020;(1):5-8. doi: 10.30841/2708-8731.1.2020.471239.
- 42. Pakharenko LV. Effect of estrogen receptor gene ESR1 polymorphism on development of premenstrual syndrome. Georgian Med News. 2014;(235):37-41. 43. Pakharenko LV, Vorobii VD, Kurtash NYa, Kusa OM, Kravchuk IV, Zhurakivskyi VM. Assessment of estrogen receptor gene polymorphism (T-397C variant) in patients with premenstrual syndrome. Wiad Lek. 2020;73(7):1505-09. doi: 10.36740/WLek202007136.
- 44. Antypkin, YG, Vdovychenko YP, Graziottin A, Kaminskyi W, Tatarchuk TF, Bulavenko OV, et al. Uterine bleedings and quality of woman's life: Resolution of advisory board. Reprod Endocrinol. 2019;47:8-12. doi: 10.18370/2309-4117.2019.47.8-12.
- 45. Pavlushynskyi Y, Makarchuk O, Vasyliuk S, Ostrovska O, Kupchak I, Glushko N, et al. Characteristics of metabolic homeostasis and hematological indicators in young women with menstrual disorders against the background of overweight and obesity. Rom J Diabetes Nutr Metab Dis. 2023;30(2):173-81. doi: 10.46389/rjd-2023-1324.
- 46. Fedosiuk K, Pakharenko L, Chayka K, Basiuha I, Kurtash O. Abnormal uterine bleeding in women of reproduc-

- tive age: PALM-COEIN causes. Bangladesh J Med Sci. 2023;22(4):809-14. doi: 10.3329/bims.v22i4.67116.
- 47. Sharifan P, Jafarzadeh Esfehani A, Zamiri A, Ekhteraee Toosi MS, Najar Sedgh Doust F, Taghizadeh N, et al. Factors associated with the severity of premenstrual symptoms in women with central obesity: a cross-sectional study. J Health Popul Nutr. 2023;42(1):9. doi: 10.1186/s41043-022-00343-5.
- 48. Vasyliuk VM, Zhurakivska OY, Kondrat AV, Khabchuk VS. Morphological characteristics of the endocrine function of the heart in comorbid pathology. Pol Merkur Lekarski. 2023;51(3):194-200. doi: 10.36740/Merkur202303102.
- 49. Miskiv V, Zhurakivska O, Kulynych H, Kulynych-Miskiv M, Antimis O, Dutchak U. Age features of the structure of the blood vessels of the some digestive glands and its restructuring in the initial stages of experimental diabetes mellitus. Wiad Lek. 2022;75(1):187-90. doi: 10.36740/WLek202201207.
- 50. Zhurakivska OYa, Koshkin OYe, Tkachuk YL, Rudyak OM, Knyazevych-Chorna TV. Age characteristics of morphogenesis of diabetic myopathies. Probl Endocrine Pathol. 2020;74(4):115-23. doi: 10.21856/j-PEP.2020.4.15.
- 51. Zhurakivska O, Zherdova N, Oliinyk R, Pobigun N, Kostitska I, Zhurakivskyi V, et al. Evidence of apoptosis in parvocellular nuclei of hypothalamus in diabetes mellitus. Probl Endocrine Pathol. 2021;78(4):94-103. doi: 10.21856/j-PEP.2021.4.13.
- 52. Zhurakivska OY, Bodnarchuk W, Kostitska IO, Kindrativ EO, Andriiv AV, Zhurakivskyi VM, et al. Morpho-functional characteristics liver of rats in early development of streptosotocin diabetes mellitus using cluster analysis. Probl Endocrine Pathol. 2021;75(1):84-96. doi: 10.21856/j-PEP.2021.1.11.
- 53. Vatseba TS, Sokolova LK, Neyko W, Dzvonkovska W, Muravlova OV, Derpak W. The influence of diabetes-associated factors of oncogenesis on the risk of breast and endometrial cancer and on the survival of women with this cancer. Clin Preventive Med. 2024;(2):99-105. doi: 10.31612/2616-4868.2.2024.13.
- 54. Vatseba TS. Cancer of the organs of the reproductive system in women with type 2 diabetes. effects of antidiabetic therapy. Wiad Lek. 2020;73(5):967-71. doi: 10.36740/WLek202005124.
- 55. Itriyeva K. The effects of obesity on the menstrual cycle. Curr Probl Pediatr Adolesc Health Care. 2022;52(8):101241. doi: 10.1016/j.cppeds.2022.101241.
- 56. Pakharenko LV, Zhylka NYa, Shcherbinska OS, Kravchuk IV, Lasytchuk OM, Zhurakivskyi VM, et al. The modern pathogenetic challenges of polycystic ovary syndrome. Reprod Health Woman. 2024;2(73):75-80. doi: 10.30841/2708-8731.2.2024.304662.
- 57. Dang N, Khalil D, Sun J, Naveed A, Soumare F, Hamidovic A. Waist circumfer-

- ence and its association with premenstrual food craving: The PHASE longitudinal study. Front Psychiatry. 2022;13:784316. doi: 10.3389/fpsyt.2022.784316.
- 58. Pavlushynskyi Y, Makarchuk O, Kyshakevych I, Ostrovska O. "Perinatal portrait", reproductive health parameters and risk factors for fat metabolism disorders in young overweight women. Reprod Health Woman. 2024;(4):22-31. doi: 10.30841/2708-8731.4.2024.308992.
- 59. Mizgier M, Jarzabek-Bielecka G, Jakubek E, Kedzia W. The relationship between body mass index, body composition and premenstrual syndrome prevalence in girls. Ginekol Pol. 2019;90(5):256-61. doi: 10.5603/GP.2019.0048.
- 60. Chun H, Doo M. Sleep quality in women with premenstrual syndrome is associated with metabolic syndrome-related variables. Health-care (Basel). 2023;11(10):1492. doi: 10.3390/healthcare11101492.
- 61. Huang YM, Chien WC, Cheng CG, Chang YH, Chung CH, Cheng CA. Females with diabetes mellitus increased the incidence of premenstrual syndrome. Life (Basel). 2022;12(6):777. doi: 10.3390/life12060777.
- 62. Trout KK, Teff KL. Insulin sensitivity and premenstrual syndrome. Curr Diab Rep. 2004;4(4):273-80. doi: 10.1007/s11892-004-0079-4.
- 63. Zarei S, Mosalanejad L, Ghobadifar MA. Blood glucose levels, insulin concentrations, and insulin resistance in healthy women and women with premenstrual syndrome: a comparative study. Clin Exp Reprod Med. 2013;40(2):76-82. doi: 10.5653/cerm.2013.40.2.76.
- 64. Khamlaoui W, Mehri S, Hammami S, Elosua R, Hammami M. Association of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen (AGT M235T) polymorphisms with the risk of obesity in a Tunisian population. J Renin Angiotensin Aldosterone Syst. 2020;21(2):1470320320907820. doi: 10.1177/1470320320907820.
- 65. Liu JY, Yi YZ, Guo QW, Jia KX, Li XC, Cai JJ, et al. Associations of ACE I/D and AGTR1 rs5182 polymorphisms with diabetes and their effects on lipids in an elderly Chinese population. Lipids Health Dis. 2024;23(1):231. doi: 10.1186/s12944-024-02222-w.
- 66. Rajkumari S, Ningombam SS, Chhungi V, Newmei MK, Devi NK, Mondal PR, et al. Association of ACE I/D gene polymorphism and related risk factors in impaired fasting glucose and type 2 diabetes: a study among two tribal populations of North-East India. Mol Biol Rep. 2022;49(2):1037-44. doi: 10.1007/s11033-021-06924-7.
- 67. Pan YH, Wang M, Huang YM, Wang YH, Chen YL, Geng LJ, et al. ACE Gene I/D polymorphism and obesity in 1,574 patients with type 2 diabetes mellitus. Dis Markers. 2016;2016:7420540. doi: 10.1155/2016/7420540.

- 68. Pirozzi FF, Belini JrE, Okumura JV, Salvarani M, Bonini-Domingos CR, Ruiz MA. The relationship between of ACE I/D and the MTHFR C677T polymorphisms in the pathophysiology of type 2 diabetes mellitus in a population of Brazilian obese patients. Arch Endocrinol Metab. 2018;62(1):21-6. doi: 10.20945/2359-3997000000005.
- 69. Lelis DF, Pereira AC, Krieger JE, Mill JG, Santos SHS, Baldo MP. Polymorphisms of the renin-angiotensin system are not associated with overweight and obesity in a general adult population. Arch Endocrinol Metab. 2019;63(4):402-10. doi: 10.20945/2359-399700000155.
- 70. Pakharenko LV, Vorobii VD, Kurtash NY, Basiuha IO. Association of ACE gene polymorphism with development of premenstrual syndrome. Georgian Med News. 2019;(294):37-41.

- 71. Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci. 2023;321:121606. doi: 10.1016/j.lfs.2023.121606.
- 72. Pakharenko LV, Basiuha IO, Zhurakivskyi VM, Lasytchuk OM, Kurtash NYa. The importance of the genital tract microflora in the endometriosis development. Reprod Health Woman. 2023;(2):21-5. doi: 10.30841/2708-8731.2.2023.278155.
- 73. Hinchytska L, Lasitchuk O, Zhurakivsky V, Basyuga I, Kurtash N, Pakharenko L. Restoration and preservation of the vaginal ecosystem in postmenopausal women. Reprod Health Woman. 2021;(6):77-82. doi: 10.30841/2708-8731.6.2021.244389. 74. Takeda T, Yoshimi K, Kai S, Ozawa G, Yamada K, Hiramatsu K. Characteristics of the gut microbiota in women with pre-

- menstrual symptoms: A cross-sectional study. PLoS One. 2022;17(5):e0268466. doi: 10.1371/journal.pone.0268466.
- 75. Okuma K, Kono K, Otaka M, Ebara A, Odachi A, Tokuno H, et al. Characteristics of the Gut Microbiota in Japanese Patients with Premenstrual Syndrome. Int J Womens Health. 2022;14:1435-45. doi: 10.2147/JWH.S377066.
- 76. Yao Y, Hu H, Chen L, Zheng H. Association between gut microbiota and menstrual disorders: a two-sample Mendelian randomization study. Front Microbiol. 2024;15:1321268. doi: 10.3389/fmicb.2024.1321268.
- 77. Takeda T, Chiba Y. Evaluation of a natural S-equol supplement in treating premenstrual symptoms and the effect of the gut microbiota: An open-label pilot study. Neuropsychopharmacol Rep. 2022;42(2):127-34. doi: 10.1002/npr2.12234.
- 78. Sato A, Fukawa-Nagira A, Sashihara T. Lactobacillus paragasseri OLL2809 improves premenstrual psychological symptoms in healthy women: A randomized, double-blind, placebo-controlled study. Nutrients. 2023;15(23):4985. doi: 10.3390/nu15234985.
- 79. Funnell EL, Martin-Key NA, Bahn S. Improving care experiences for premenstrual symptoms and disorders in the United Kingdom (UK): a mixed-methods approach. BMC Health Serv Res. 2025;25(1):70. doi: 10.1186/s12913-024-12140-3.
- 80. Labots-Vogelesang MS, Teunissen DAM, Kranenburg V, Lagro-Janssen ALM. Views of Dutch general practitioners about premenstrual symptoms: A qualitative interview study. Eur J Gen Pract. 2021;27(1):19-26. doi: 10.1080/13814788.2021.1889505.

Стаття надійшла до редакції 10.02.2025. – Дата першого рішення 13.02.2025. – Стаття подана до друку 18.03.2025